翻訳と辞書
Words near each other
・ Breskvar v Wall
・ Breskve u teškom sirupu vol. 1
・ Breslau (disambiguation)
・ Breslau Eleven
・ Breslau Tumbler
・ Breslau, Nebraska
・ Breslau, Ontario
・ Breslau, Pennsylvania
・ Breslau, Texas
・ Breslauer
・ Breslauer SC 08
・ Bresle
・ Bresle (river)
・ Bresle method
・ Bresler
Bresler Pister yield criterion
・ Bresler's Ice Cream
・ Bresles
・ Breslin Student Events Center
・ Breslov
・ Breslov (Hasidic group)
・ Breslov Research Institute
・ Breslow
・ Breslow's depth
・ Breslyn Apartments
・ Bresnahan
・ Bresnan Communications
・ Bresnay
・ Bresnic River
・ Bresnica


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Bresler Pister yield criterion : ウィキペディア英語版
Bresler Pister yield criterion

The Bresler-Pister yield criterion〔Bresler, B. and Pister, K.S., (1985), ''Strength of concrete under combined stresses'', ACI Journal, vol. 551, no. 9, pp. 321-345.〕 is a function that was originally devised to predict the strength of concrete under multiaxial stress states. This yield criterion is an extension of the Drucker-Prager yield criterion and can be expressed on terms of the stress invariants as
:
\sqrt = A + B~I_1 + C~I_1^2

where I_1 is the first invariant of the Cauchy stress, J_2 is the second invariant of the deviatoric part of the Cauchy stress, and A, B, C are material constants.
Yield criteria of this form have also been used for polypropylene 〔Pae, K. D., (1977), ''The macroscopic yield behavior of polymers in multiaxial stress fields'', Journal of Materials Science, vol. 12, no. 6, pp. 1209-1214.〕 and polymeric foams.〔Kim, Y. and Kang, S., (2003), ''Development of experimental method to characterize pressure-dependent yield criteria for polymeric foams.'' Polymer Testing, vol. 22, no. 2, pp. 197-202.〕
The parameters A,B,C have to be chosen with care for reasonably shaped yield surfaces. If \sigma_c is the yield stress in uniaxial compression, \sigma_t is the yield stress in uniaxial tension, and \sigma_b is the yield stress in biaxial compression, the parameters can be expressed as
:
\begin
B = & \left(\cfrac\right)
\left(\cfrac \right) \\
C = & \left(\cfrac\right)
\left(\cfrac \right) \\
A = & \cfrac

:}\left()^ - A - B~(\sigma_1+\sigma_2+\sigma_3) - C~(\sigma_1+\sigma_2+\sigma_3)^2 = 0~.

If \sigma_t = \sigma_1 is the yield stress in uniaxial tension, then
:
\cfrac
A := & \cfrac \\
B := & \cfrac \\
C := & \cfrac
\end

|}
== Alternative forms of the Bresler-Pister yield criterion ==
In terms of the equivalent stress (\sigma_e) and the mean stress (\sigma_m), the Bresler-Pister yield criterion can be written as
:
\sigma_e = a + b~\sigma_m + c~\sigma_m^2 ~;~~ \sigma_e = \sqrt ~,~~ \sigma_m = I_1/3 ~.

The Etse-Willam〔Etse, G. and Willam, K., (1994), ''Fracture energy formulation for inelastic behavior of plain concrete'', Journal of Engineering Mechanics, vol. 120, no. 9, pp. 1983-2011.〕 form of the Bresler-Pister yield criterion for concrete can be expressed as
:
\sqrt = \cfrac\right)~I_1^2

where \sigma_c is the yield stress in uniaxial compression and \sigma_t is the yield stress in uniaxial tension.
The GAZT yield criterion〔Gibson, L. J., Ashby, M. F., Zhang, J., and Triantafillou, T. C. (1989). ''Failure surfaces for cellular materials under multiaxial loads. I. Modelling.'' International Journal of Mechanical Sciences, vol. 31, no. 9, pp. 635–663.〕 for plastic collapse of foams also has a form similar to the Bresler-Pister yield criterion and can be expressed as
:
\sqrt = \begin
\cfrac\cfrac~I_1^2 \\
-\cfrac\cfrac~I_1^2
\end

where \rho is the density of the foam and \rho_m is the density of the matrix material.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Bresler Pister yield criterion」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.